Determination




Whether a body is in the circumstellar habitable zone of its host star is dependent on the radius of the planet's orbit (for natural satellites, the host planet's orbit), the mass of the body itself, and the radiative flux of the host star. Given the large spread in the masses of planets within a circumstellar habitable zone, coupled with the discovery of super-Earth planets which can sustain thicker atmospheres and stronger magnetic fields than Earth, circumstellar habitable zones are now split into two separate regions—a "conservative habitable zone" in which lower-mass planets like Earth can remain habitable, complemented by a larger "extended habitable zone" in which a planet like Venus, with stronger greenhouse effects, can have the right temperature for liquid water to exist at the surface.

Solar System estimatesedit

Estimates for the habitable zone within the Solar System range from 0.38 to 10.0 astronomical units, though arriving at these estimates has been challenging for a variety of reasons. Numerous planetary mass objects orbit within, or close to, this range and as such receive sufficient sunlight to raise temperatures above the freezing point of water. However their atmospheric conditions vary substantially. The aphelion of Venus, for example, touches the inner edge of the zone and while atmospheric pressure at the surface is sufficient for liquid water, a strong greenhouse effect raises surface temperatures to 462 °C (864 °F) at which water can only exist as vapour. The entire orbits of the Moon, Mars, and numerous asteroids also lie within various estimates of the habitable zone. Only at Mars' lowest elevations (less than 30% of the planet's surface) is atmospheric pressure and temperature sufficient for water to, if present, exist in liquid form for short periods. At Hellas Basin, for example, atmospheric pressures can reach 1,115 Pa and temperatures above zero Celsius (about the triple point for water) for 70 days in the Martian year. Despite indirect evidence in the form of seasonal flows on warm Martian slopes, no confirmation has been made of the presence of liquid water there. While other objects orbit partly within this zone, including comets, Ceres is the only one of planetary mass. A combination of low mass and an inability to mitigate evaporation and atmosphere loss against the solar wind make it impossible for these bodies to sustain liquid water on their surface. Despite this, studies are strongly suggestive of past liquid water on the surface of Venus, Mars, Vesta and Ceres, suggesting a more common phenomena than previously thought. Since sustainable liquid water is thought to be essential to support complex life, most estimates, therefore, are inferred from the effect that a repositioned orbit would have on the habitability of Earth or Venus as their surface gravity allows sufficient atmosphere to be retained for several billion years.

According to extended habitable zone concept, planetary-mass objects with atmospheres capable of inducing sufficient radiative forcing could possess liquid water farther out from the Sun. Such objects could include those whose atmospheres contain a high component of greenhouse gas and terrestrial planets much more massive than Earth (super-Earth class planets), that have retained atmospheres with surface pressures of up to 100 kbar. There are no examples of such objects in the Solar System to study; not enough is known about the nature of atmospheres of these kinds of extrasolar objects, and their position in the habitable zone cannot determine the net temperature effect of such atmospheres including induced albedo, anti-greenhouse or other possible heat sources.

For reference, the average distance from the Sun of some major bodies within the various estimates of the habitable zone is: Mercury, 0.39 AU; Venus, 0.72 AU; Earth, 1.00 AU; Mars, 1.52 AU; Vesta, 2.36 AU; Ceres, 2.77 AU; Jupiter, 5.20 AU; Saturn, 9.58 AU.

Estimates of the circumstellar habitable zone boundaries of the Solar System
Inner edge (AU) Outer edge (AU) Year Notes
0.725 1.24 1964, Dole Used optically thin atmospheres and fixed albedos. Places the aphelion of Venus just inside the zone.
1.385–1.398 1969, Budyko Based on studies of ice albedo feedback models to determine the point at which Earth would experience global glaciation. This estimate was supported in studies by Sellers 1969 and North 1975.
0.88–0.912 1970, Rasool and De Bergh Based on studies of Venus's atmosphere, Rasool and De Bergh concluded that this is the minimum distance at which Earth would have formed stable oceans.
0.95 1.01 1979, Hart et al. Based on computer modelling and simulations of the evolution of Earth's atmospheric composition and surface temperature. This estimate has often been cited by subsequent publications.
3.0 1992, Fogg Used the carbon cycle to estimate the outer edge of the circumstellar habitable zone.
0.95 1.37 1993, Kasting et al. Founded the most common working definition of the habitable zone used today. Assumes that CO2 and H2O are the key greenhouse gases as they are for the Earth. Argued that the habitable zone is wide because of the carbonate-silicate cycle. Noted the cooling effect of cloud albedo. Table shows conservative limits. Optimistic limits were 0.84–1.67 AU.
2.0 2010, Spiegel et al. Proposed that seasonal liquid water is possible to this limit when combining high obliquity and orbital eccentricity.
0.75 2011, Abe et al. Found that land-dominated "desert planets" with water at the poles could exist closer to the Sun than watery planets like Earth.
10 2011, Pierrehumbert and Gaidos Terrestrial planets that accrete tens-to-thousands of bars of primordial hydrogen from the protoplanetary disc may be habitable at distances that extend as far out as 10 AU in the Solar System.
0.77–0.87 1.02–1.18 2013, Vladilo et al. Inner edge of circumstellar habitable zone is closer and outer edge is farther for higher atmospheric pressures; determined minimum atmospheric pressure required to be 15 mbar.
0.99 1.70 2013, Kopparapu et al. Revised estimates of the Kasting et al. (1993) formulation using updated moist greenhouse and water loss algorithms. According to this measure Earth is at the inner edge of the HZ and close to, but just outside, the moist greenhouse limit. As with Kasting et al. (1993), this applies to an Earth-like planet where the "water loss" (moist greenhouse) limit, at the inner edge of the habitable zone, is where the temperature has reached around 60 Celsius and is high enough, right up into the troposphere, that the atmosphere has become fully saturated with water vapour. Once the stratosphere becomes wet, water vapour photolysis releases hydrogen into space. At this point cloud feedback cooling does not increase significantly with further warming. The "maximum greenhouse" limit, at the outer edge, is where a CO
2
dominated atmosphere, of around 8 bars, has produced the maximum amount of greenhouse warming, and further increases in CO
2
will not create enough warming to prevent CO
2
catastrophically freezing out of the atmosphere. Optimistic limits were 0.97–1.70 AU. This definition does not take into account possible radiative warming by CO
2
clouds.
0.38 2013, Zsom et al.
Estimate based on various possible combinations of atmospheric composition, pressure and relative humidity of the planet's atmosphere.
0.95 2013, Leconte et al. Using 3-D models, these authors computed an inner edge of 0.95 AU for the Solar System.
0.95 2.4 2017, Ramirez and Kaltenegger
An expansion of the classical carbon dioxide-water vapor habitable zone assuming a volcanic hydrogen atmospheric concentration of 50%.
0.93–0.91 2019, Gomez-Leal et al.
Estimation of the moist greenhouse threshold by measuring the water mixing ratio in the lower stratosphere, the surface temperature, and the climate sensitivity on an Earth analog with and without ozone, using a global climate model (GCM). It shows the correlation of a water mixing ratio value of 7 g/kg, a surface temperature of about 320 K, and a peak of the climate sensitivity in both cases.
0.99 1.01 Tightest bounded estimate from above
0.38 10 Most relaxed estimate from above

Extrasolar extrapolationedit

Astronomers use stellar flux and the inverse-square law to extrapolate circumstellar habitable zone models created for the Solar System to other stars. For example, according to Kopparapu's habitable zone estimate, although the Solar System has a circumstellar habitable zone centered at 1.34 AU from the Sun, a star with 0.25 times the luminosity of the Sun would have a habitable zone centered at , or 0.5, the distance from the star, corresponding to a distance of 0.67 AU. Various complicating factors, though, including the individual characteristics of stars themselves, mean that extrasolar extrapolation of the CHZ concept is more complex.

Spectral types and star-system characteristicsedit

Some scientists argue that the concept of a circumstellar habitable zone is actually limited to stars in certain types of systems or of certain spectral types. Binary systems, for example, have circumstellar habitable zones that differ from those of single-star planetary systems, in addition to the orbital stability concerns inherent with a three-body configuration. If the Solar System were such a binary system, the outer limits of the resulting circumstellar habitable zone could extend as far as 2.4 AU.

With regard to spectral types, Zoltán Balog proposes that O-type stars cannot form planets due to the photoevaporation caused by their strong ultraviolet emissions. Studying ultraviolet emissions, Andrea Buccino found that only 40% of stars studied (including the Sun) had overlapping liquid water and ultraviolet habitable zones. Stars smaller than the Sun, on the other hand, have distinct impediments to habitability. For example, Michael Hart proposed that only main-sequence stars of spectral class K0 or brighter could offer habitable zones, an idea which has evolved in modern times into the concept of a tidal locking radius for red dwarfs. Within this radius, which is coincidental with the red-dwarf habitable zone, it has been suggested that the volcanism caused by tidal heating could cause a "tidal Venus" planet with high temperatures and no hospitable environment to life.

Others maintain that circumstellar habitable zones are more common, and that it is indeed possible for water to exist on planets orbiting cooler stars. Climate modelling from 2013 supports the idea that red dwarf stars can support planets with relatively constant temperatures over their surfaces in spite of tidal locking. Astronomy professor Eric Agol argues that even white dwarfs may support a relatively brief habitable zone through planetary migration. At the same time, others have written in similar support of semi-stable, temporary habitable zones around brown dwarfs. Also, a habitable zone in the outer parts of stellar systems may exist during the pre-main-sequence phase of stellar evolution, especially around M-dwarfs, potentially lasting for billion-year timescales.

Stellar evolutionedit

Circumstellar habitable zones change over time with stellar evolution. For example, hot O-type stars, which may remain on the main sequence for fewer than 10 million years, would have rapidly changing habitable zones not conducive to the development of life. Red dwarf stars, on the other hand, which can live for hundreds of billions of years on the main sequence, would have planets with ample time for life to develop and evolve. Even while stars are on the main sequence, though, their energy output steadily increases, pushing their habitable zones farther out; our Sun, for example, was 75% as bright in the Archaean as it is now, and in the future, continued increases in energy output will put Earth outside the Sun's habitable zone, even before it reaches the red giant phase. In order to deal with this increase in luminosity, the concept of a continuously habitable zone has been introduced. As the name suggests, the continuously habitable zone is a region around a star in which planetary-mass bodies can sustain liquid water for a given period. Like the general circumstellar habitable zone, the continuously habitable zone of a star is divided into a conservative and extended region.

In red dwarf systems, gigantic stellar flares which could double a star's brightness in minutes and huge starspots which can cover 20% of the star's surface area, have the potential to strip an otherwise habitable planet of its atmosphere and water. As with more massive stars, though, stellar evolution changes their nature and energy flux, so by about 1.2 billion years of age, red dwarfs generally become sufficiently constant to allow for the development of life.

Once a star has evolved sufficiently to become a red giant, its circumstellar habitable zone will change dramatically from its main-sequence size. For example, the Sun is expected to engulf the previously-habitable Earth as a red giant. However, once a red giant star reaches the horizontal branch, it achieves a new equilibrium and can sustain a new circumstellar habitable zone, which in the case of the Sun would range from 7 to 22 AU. At such stage, Saturn's moon Titan would likely be habitable in Earth's temperature sense. Given that this new equilibrium lasts for about 1 Gyr, and because life on Earth emerged by 0.7 Gyr from the formation of the Solar System at latest, life could conceivably develop on planetary mass objects in the habitable zone of red giants. However, around such a helium-burning star, important life processes like photosynthesis could only happen around planets where the atmosphere has carbon dioxide, as by the time a solar-mass star becomes a red giant, planetary-mass bodies would have already absorbed much of their free carbon dioxide. Moreover, as Ramirez and Kaltenegger (2016) showed, intense stellar winds would completely remove the atmospheres of such smaller planetary bodies, rendering them uninhabitable anyway. Thus, Titan would not be habitable even after the Sun becomes a red giant. Nevertheless, life need not originate during this stage of stellar evolution for it to be detected. Once the star becomes a red giant, and the habitable zone extends outward, the icy surface would melt, forming a temporary atmosphere that can be searched for signs of life that may have been thriving before the start of the red giant stage.

Desert planetsedit

A planet's atmospheric conditions influence its ability to retain heat, so that the location of the habitable zone is also specific to each type of planet: desert planets (also known as dry planets), with very little water, will have less water vapor in the atmosphere than Earth and so have a reduced greenhouse effect, meaning that a desert planet could maintain oases of water closer to its star than Earth is to the Sun. The lack of water also means there is less ice to reflect heat into space, so the outer edge of desert-planet habitable zones is further out.

Other considerationsedit

A planet cannot have a hydrosphere—a key ingredient for the formation of carbon-based life—unless there is a source for water within its stellar system. The origin of water on Earth is still not completely understood; possible sources include the result of impacts with icy bodies, outgassing, mineralization, leakage from hydrous minerals from the lithosphere, and photolysis. For an extrasolar system, an icy body from beyond the frost line could migrate into the habitable zone of its star, creating an ocean planet with seas hundreds of kilometers deep such as GJ 1214 b or Kepler-22b may be.

Maintenance of liquid surface water also requires a sufficiently thick atmosphere. Possible origins of terrestrial atmospheres are currently theorised to outgassing, impact degassing and ingassing. Atmospheres are thought to be maintained through similar processes along with biogeochemical cycles and the mitigation of atmospheric escape. In a 2013 study led by Italian astronomer Giovanni Vladilo, it was shown that the size of the circumstellar habitable zone increased with greater atmospheric pressure. Below an atmospheric pressure of about 15 millibars, it was found that habitability could not be maintained because even a small shift in pressure or temperature could render water unable to form as a liquid.

Although traditional definitions of the habitable zone assume that carbon dioxide and water vapor are the most important greenhouse gases (as they are on the Earth), a study led by Ramses Ramirez and co-author Lisa Kaltenegger has shown that the size of the habitable zone is greatly increased if prodigious volcanic outgassing of hydrogen is also included along with the carbon dioxide and water vapor. The outer edge in the Solar System would extend out as far as 2.4 AU in that case. Similar increases in the size of the habitable zone were computed for other stellar systems. An earlier study by Ray Pierrehumbert and Eric Gaidos had eliminated the CO2-H2O concept entirely, arguing that young planets could accrete many tens to hundreds of bars of hydrogen from the protoplanetary disc, providing enough of a greenhouse effect to extend the solar system outer edge to 10 AU. In this case, though, the hydrogen is not continuously replenished by volcanism and is lost within millions to tens-of-millions of years.

In the case of planets orbiting in the CHZs of red dwarf stars, the extremely close distances to the stars cause tidal locking, an important factor in habitability. For a tidally locked planet, the sidereal day is as long as the orbital period, causing one side to permanently face the host star and the other side to face away. In the past, such tidal locking was thought to cause extreme heat on the star-facing side and bitter cold on the opposite side, making many red dwarf planets uninhabitable; however, three-dimensional climate models in 2013, showed that the side of a red dwarf planet facing the host star could have extensive cloud cover, increasing its bond albedo and reducing significantly temperature differences between the two sides.

Planetary-mass natural satellites have the potential to be habitable as well. However, these bodies need to fulfill additional parameters, in particular being located within the circumplanetary habitable zones of their host planets. More specifically, moons need to be far enough from their host giant planets that they are not transformed by tidal heating into volcanic worlds like Io, but must remain within the Hill radius of the planet so that they are not pulled out of the orbit of their host planet. Red dwarfs that have masses less than 20% of that of the Sun cannot have habitable moons around giant planets, as the small size of the circumstellar habitable zone would put a habitable moon so close to the star that it would be stripped from its host planet. In such a system, a moon close enough to its host planet to maintain its orbit would have tidal heating so intense as to eliminate any prospects of habitability.

A planetary object that orbits a star with high orbital eccentricity may spend only some of its year in the CHZ and experience a large variation in temperature and atmospheric pressure. This would result in dramatic seasonal phase shifts where liquid water may exist only intermittently. It is possible that subsurface habitats could be insulated from such changes and that extremophiles on or near the surface might survive through adaptions such as hibernation (cryptobiosis) and/or hyperthermostability. Tardigrades, for example, can survive in a dehydrated state temperatures between 0.150 K (−273 °C) and 424 K (151 °C). Life on a planetary object orbiting outside CHZ might hibernate on the cold side as the planet approaches the apastron where the planet is coolest and become active on approach to the periastron when the planet is sufficiently warm.

Comments

Popular posts from this blog

Extrasolar discoveries

Significance for complex and intelligent life

15) Republic Day 2021: Parade timing security arrangements traffic restrictions to Delhi Metro expert services - All you need to know